Antioxidant effects of ellagic acid on testicular tissue of rats exposed to tobacco smoke metabolite-acetic acid

Nalan Kaya¹, Gonca Ozan², Durrin Ozlem Dabak¹, Seyfettin Gur³, Ibrahim Enver Ozan¹

¹Firat University, Medical School, Department of Histology and Embryology, Elazig, Turkey
²Firat University, Faculty of Veterinary Medicine, Department of Biochemistry, Elazig, Turkey
³Firat University, Faculty of Veterinary Medicine, Department of Reproduction and Artificial Insemination, Elazig, Turkey

Abstract

Aim: Tobacco smoke negatively affects the male reproductive system. Ellagic acid (EA) has protective effects against oxidative damage. The aim of the study was to examine the protective effects of EA on testis of rats exposed to tobacco smoke.

Material and Methods: Twenty-four male Spraque-Dawley rats were divided into 4 groups (n=6): Control, tobacco smoke (TS), tobacco smoke+corn oil (TS+C) and tobacco smoke+ EA (TS+EA). TS, TS+C and TS+EA groups were exposed to tobacco smoke 1 hour twice a day and EA was applied 12 mg/kg every other day. Testis tissues were removed. eNOS immunohistochemical stain and TUNEL methods were applied. Biochemical analyzes and sperm analyzes were performed.

Results: Degeneration in germinative epithelium, cell debris in the seminiferous tubule lumen, separation in basement membrane, atrophic tubules, vascular congestion and edema in interstitial area were observed in TS and TS+C groups. Increased apoptotic cells and eNOS immunoreactivity were observed in TS and TS+C groups. EA administration caused a decrease in histological alterations, eNOS immunoreactivity and apoptotic cells. Increased MDA levels, decreased CAT and GSH-Px activities were observed in TS and TS+C groups. MDA levels decreased, CAT and GSH-Px activities increased in TS+EA group. A significant increase in the amount of abnormal sperm was detected in TS and TS+C groups. The reduction in the amount of abnormal sperm was detected in TS+EA group.

Conclusions: Exposure to TS led to marked alterations on testes tissue and treatment with EA might prevent these toxic effects.

Keywords: Tobacco Smoke; Testis; Ellagic Acid; Rat; TUNEL.

INTRODUCTION

Tobacco smoke has highly adverse effects on all tissues and systems in the body because of its toxic substances. The respiratory, cardiovascular and reproductive systems are mostly affected from tobacco smoke exposure (1).

Male infertility may be caused by numerous factors such as hormonal aberrations, several diseases, genetic disorders, poor semen quality and some toxic chemicals (2). It has been suggested that tobacco smoking negatively affects every process involved in the male reproductive system (3). Nitric oxide (NO), produced by three isoforms of NO synthase (neuronal NOS, inducible NOS and endothelial NOS), is a free radical and has been implicated in various reproductive functions. It is one of the numerous factors that causes oxidative stress in many cases such as testicular injury (4).

Ellagic acid (EA), [2, 3, 7, 8-tetrahydroxy [1]-benzopyranol [5, 4, 3-cde] benzopyran 5, 10-dione], a natural phenolic lactone compound, is found in various plant species including strawberries, pomegranate, grape, blackberries and raspberries. Recent studies have shown that EA has antioxidant (5), antiapoptotic (6), anticarcinogenic (7,8), antibacterial (9) and antiinflammatory (10) effects.

EA can safely interacts with the free radicals and reduces oxidative stress through the phenolic ring and hydroxyl components in its structure (11). The aim of the present study was to examine the protective effects of ellagic acid against oxidative damage on testis tissues of rats induced by tobacco smoke.

MATERIAL and METHODS

Ethical approval

All experimental procedures involving animals were approved by the local ethics committee of the Firat University (05.02.14, 2014/4-42).
Experimental Design
This experimental study was carried out at the Experimental Research Unit of Firat University (FUDAM). Twenty-four male Sprague-Dawley rats aged eight weeks old (200±10 g) were used in the study. Rats were fed with standard rat chow and tap water freely available. 12-h light-dark cycles, 21±1°C standard temperature and humidity conditions were provided. The rats were divided randomly into 4 equal groups: Control, tobacco smoke (TS), tobacco smoke + corn oil (TS+C) and tobacco smoke + ellagic acid (TS+EA). During 12 weeks of experimental stage, the rats treated as follows: The rats in group TS, TS+C and TS+EA were exposed to tobacco smoke 1 hour twice a day. In addition to tobacco smoke exposure, 12 mg/kg and dissolved in corn oil ellagic acid (A15722 Lot: 10176718, Ellagic acid hydrate, Alfa Aesar, Germany) was applied to the rats in group TS+EA and equal amount of corn oil used in solving ellagic acid was applied to the rats in group TS+C by oral gavage.

A glass cage, in the size of 150x50x50 cm and openable cover from the top, has been designed specifically for exposing the rats to tobacco smoke. The smoke of 10 grams tobacco was introduced into the glass cage via air pump (AP-001 Aquarium Air Pump Xilong, China). At the end of the experimental period of 12 weeks rats were decapitated under xylazine (10 mg/kg)–ketamine (75 mg/kg) anesthesia. The epididymal sperm concentration was determined with standard rat chow and tap water freely available.

Evaluation of sperm parameters
The epididymal sperm concentration was determined with a hemocytometer using a modified method described by Turk et al. (16) and Sonmez et al. (17). The percentage of forward progressive sperm motility was assessed using a light microscope with heated stage as described by Turk et al. (16) and Sonmez et al. (17). The percentage of forward progressive sperm motility was assessed using a light microscope with heated stage as described by Turk et al. (16) and Sonmez et al. (17). The percentage of forward progressive sperm motility was assessed using a light microscope with heated stage as described by Turk et al. (16) and Sonmez et al. (17).

Three different fields in each sample were evaluated under a light microscope at 400 magnifications. The mean of these three values was used as the final motility score. To detect the percentage of morphologically abnormal spermatozoa, the slides stained with eosin-nigrosin (1.67% eosin, 10% nigrosin and 0.1 M sodium citrate) and Masson’s Trichrome staining and examined under the light microscope (NovelN-800 M, Ningbo, China).

Severity of testicular injury was semi-quantitatively evaluated following alterations: degeneration in seminiferous tubule germinative epithelium, separation in basement membranes, vascular congestion, atrophic tubules, edema in interstitial area and immature cell debris in tubule lumen. Scores were given as 0= absent, 1= weak, 2= moderate and 3= strong for each criteria. The microscopic score of each tissue was calculated as the sum of the scores given to each criterion, and at least five microscopic areas were examined under a x20 objective to score each specimen.

Biochemical evaluation of testes tissue
For biochemical analyzes testes were taken and stored at -80°C until analysis. The concentrations of MDA as a marker of lipid peroxidation were determined according to a modified method of Placer (1966), based on the reaction with thiobarbituric acid, and were expressed as nmol g tissue−1 (12). CAT activity was determined by measuring the decomposition of hydrogen peroxide at 240 nm, according to the method of Aebi (1983) and was expressed as k (g protein−1), where k is the first-order rate constant (13). Protein concentrations were measured according to Lowry et al. (1951) (14). GSH-Px activity was determined using the method of Beutler (1975), which records at 340 nm the disappearance of NADPH and was expressed as U/g protein (15).

Statistical analysis
All statistical analyzes were performed using SPSS 22.0 (Statistical Package for Social Sciences) software. Results were presented as the means ± standard deviation. Probability values (p) less than 0.05 were accepted as statistically significant. Statistical differences of multiple groups with normal distribution were measured by one-way analysis of variance (ANOVA) followed by Tukey’s multiple comparison test.
RESULTS

Histological evaluation

The histological examination by light microscope of rat testis tissues showed normal morphology in the control group (Figure 1A, 1B).

When TS group compared with control group; degeneration in seminiferous tubule germinative epithelium, separation in basement membranes, vascular congestion, atrophic tubules, edema in interstitial area and immature cell debris in tubule lumen were detected (Figure 1C, 1D, 1E).

On the other hand, in TS+C group the similar findings were detected with the TS group (Figure 1F, 1G). The significant improvements were observed in germinative epithelium degeneration, separation of seminiferous tubule basement membranes, vascular congestion and interstitial edema in TS+EA group (Figure 1H, 1I). The results of the histological scoring of the testis tissues are shown in Figure 4A.

Evaluation of apoptosis in testis tissues

In TUNEL positive cell numbers in TS and TS+C groups compared to the control group, a significant increase was detected. The number of TUNEL positive cells was evaluated in TS+EA group similar to control group (Figure 2). The results of the apoptotic index are shown in Figure 4B.

Immunohistochemical findings- eNOS immunoreactivity

eNOS immunoreactivity was observed only in the interstitial area of the testis. Significantly increased eNOS immunoreactivity was observed in TS and TS+C group compared with the control group. On the other hand, eNOS immunoreactivity decreased in TS+EA group similar to control group (Figure 3). The results of the eNOS immunoreactivity histoscore are shown in Figure 4B.

Biochemical Results

The levels of MDA, CAT and GSH-Px activities were shown in Figure 4C. In TS and TS+C groups compared with the control group a significantly increase was detected in the levels of MDA. It was found that ellagic acid administration reduced the MDA levels similar to the control group. CAT and GSH-Px enzyme activities in TS and TS+C groups were significantly decreased compared to the control group. Also significantly increase in CAT and GSH-Px enzyme activities was detected in TS+EA group compared with TS and TS+C groups.

Sperm Analyses

The difference of sperm motility and sperm concentration among the groups wasn’t found significantly. A significant increase in abnormal sperm amount was detected in TS
group compared with control group. The reduction in the amount of abnormal sperm was found in TS+EA group compared with TS group. The results of sperm motility, sperm concentration and abnormal sperm amount are shown in Figure 4D.

Figure 4. (A) The histological scores of groups, (B) The apoptotic index and eNOS immunoreactivity histoscore of groups, (C) Testes tissue MDA, CAT and GSH-Px levels, (D) Sperm motility, sperm concentration and abnormal sperm amount of groups.

DISCUSSION

Smoking may decrease the sperm count, affect the development and quality of sperm and reduce the volume of semen (19). Toxins found in tobacco smoke such as nicotine, cadmium, benzo pyrene and related by-products can damage the genetic material in sperm cells (20).

Yamamoto et al. (21) reported that exposed to tobacco smoke decreased the sperm amount, motility and fertilization capacity. Kapawa et al. (22) detected that exposed to tobacco smoke for 10 weeks decreased in the percentage of motile sperm.

In this study, the difference of sperm motility and sperm concentration among the groups wasn’t found statistically significant. On the other hand, the increasing of abnormal sperm number was detected in TS group compared with the control group.

Spermatogenic cell degeneration and seminiferous tubule germinative epithelium degradation have been detected in testis tissues of Wistar rats exposed to tobacco smoke 2 h/day during 60 days (23).

In the present study, there were seminiferous tubule germinative epithelium degeneration, basement membranes separation, vascular congestion, atrophic tubules and edema in interstitial area in TS group. When the external stimuli disrupting the internal balance of testis, apoptosis occurs in high levels. Infertility and deterioration of spermatogenesis may occur depending on this condition (24-26). Rajpurkar et al. (27) reported that exposure to tobacco smoke caused an increase in apoptotic index in peripubertal period of Spraque- Dawley rats. In another study conducted on rats exposed to tobacco smoke 3 h/day for 8 weeks seminiferous tubule degeneration, increase in atrophic tubules number and apoptotic index were observed (28). In this study it was also found that exposed to tobacco smoke significantly increased the apoptotic index.

As we showed by TUNEL, there are increased apoptotic index in some germinal series. On the other hand, cellular debris, edema and separation of the basement membranes are patterns of the necrosis. Even if cell death mechanisms and morphological changes of apoptosis and necrosis differ, apoptotic pathway can be induced a necrotic phenotype by alteration of the availability of intracellular ATP and caspases. Therefore, we believe that apoptosis is much more responsible for tobacco smoke-induced testicular damage.

The correlation among the increased apoptotic germ cells and NOS activity concurrent with decreased total antioxidant capacity has been reported (29). It was revealed that eNOS immunoreactivity increased in testicular damage induced by cadmium (30). In our study it was also detected that increased eNOS immunoreactivity exposed to tobacco smoke.

Spermatozoa are very sensitive to ROS-induced damage because of polyunsaturated fatty acids (PUFA) in plasma membranes and a few scavenging enzymes in cytoplasm (31,32). Increasing free radicals can induce lipid peroxidation that causes deterioration by oxidizing polyunsaturated fatty acids. Peroxidation of sperm lipids can damage the matrix of spermatozoa membran lipids. Loss of intracellular ATP cause the reduction sperm motility, axonal injury and defective sperm neck (33,34). Tobacco smoke contains a high concentration of reactive oxygen species (ROS) and these radicals give rise to oxidative stress by impairing oxidant- antioxidant balance (35). Defense mechanism develops against oxidative damage by using different antioxidant enzymes if ROS accumulation occurs. CAT and GSH-Px are two important enzymes in this pathway (36). It is evaluated that exposed to tobacco smoke for 30 min four times a day caused to increase in MDA levels and decrease in CAT and GSH-Px levels (37). There is no information found in literature how EA play a role against the effect of tobacco smoke exposure on testes. But it is reported that EA is a power antioxidant (38).

It was observed that increase in the percentage of abnormal sperm, necrosis in spermatogenic cells, tubular degeneration and atrophy, interstitial edema, vascular congestion, immature cell debris in testicular damage.
caused by 15 mg/kg cyclosporin-A and 7mg/kg cisplatin. It has been reported that 10mg/kg ellagic acid exhibit protective effect on testes by providing reduction many of these findings. Also, in the same study application of cyclosporin-A caused increasing in MDA-level, decreasing in GSH-Px and CAT levels. It was reported that EA administration inhibited the oxidative stress-induced tissue damage by preventing this changes (39,34). Administration of 2mg/kg EA reduced lipid peroxidation and decreased apoptotic cell number by protective effects against to testicular damage formed by adriamisin (40).

The findings of our study are in agreement with the literature. According to our results it was found that tobacco smoke exposure increased the lipid peroxidation and reduced antioxidant enzymes CAT and GSH-Px levels, as well as the EA application reduced lipid peroxidation and increased antioxidant enzyme levels in the testicular tissue.

CONCLUSION

Ellagic acid decreased abnormal sperm number and ameliorated the seminiferous tubule dejeranneration, vascular congestion, interstitial edema and seminiferous tubule basement membrane sepearations, likewise vascular congestion, interstitial edema and seminiferous ameliorated the seminiferous tubule dejeneration, likewise vascular congestion, interstitial edema and seminiferous ameliorated the seminiferous tubule dejeneration, likewise vascular congestion, interstitial edema and seminiferous ameliorated the seminiferous tubule dejeneration, likewise vascular congestion, interstitial edema and seminiferous ameliorated the seminiferous tubule dejeneration, likewise vascular congestion, interstitial edema and seminiferous ameliorated the seminiferous tubule dejeneration, likewise vascular congestion, interstitial edema and seminiferous ameliorated the seminiferous tubule dejeneration, likewise vascular congestion, interstitial edema and seminiferous ameliorated the seminiferous tubule dejeneration, likewise vascular congestion, interstitial edema and seminiferous ameliorated the seminiferous tubule dejeneration, likewise vascular congestion, interstitial edema and seminiferous ameliorated the seminiferous tubule dejeneration, likewise vascular congestion, interstitial edema and seminiferous ameliorated the seminiferous tubule dejeneration, likewise vascular congestion, interstitial edema and seminiferous ameliorated the seminiferous tubule dejeneration, likewise vascular congestion, interstitial edema and seminiferous ameliorated the seminiferous tubule dejeneration, likewise vascular congestion, interstitial edema and seminiferous ameliorated the seminiferous tubule dejeneration, likewise vascular congestion, interstitial edema and seminiferous ameliorated the seminiferous tubule dejeneration, likewise vascular congestion, interstitial edema and seminiferous ameliorated the seminiferous tubule dejeneration, likewise vascular congestion, interstitial edema and seminiferous ameliorated the seminiferous tubule dejeneration, likewise vascular congestion, interstitial edema and seminiferous ameliorated the seminiferous tubule dejeneration.

REFERENCES

30. Sonmez MF, Tascioglu S. Protective effects of grape seed extract on cadmium-induced testicular damage, apoptosis, and endothelial nitric oxide synthases expression in rats. Toxicol Ind Health 2016;32(8):1486-94.


