N-terminal pro-brain natriuretic peptide predicts instent restenosis in patients with stable coronary artery disease

Adil Bayramoglu

Ordu University, School of Medicine, Department of Cardiology, Ordu, Turkey

Abstract

Aim: Instent restenosis is associated with a poor outcomes in coronary artery disease patients. There are many factors and mechanisms that contribute to the development of IRS. Some of clinical trials have been shown that N-Terminal–pro Brain Natriuretic Peptide has an important prognostic value in coronary artery disease. We aimed to evaluate the relationship between stent restenosis and N-Terminal–pro Brain Natriuretic Peptide in patients of stable coronary artery disease undergo percutaneous coronary intervention.

Material and Methods: 411 patients with stent implantation due to stable coronary artery disease were evaluated and eighty patients underwent re-coronary angiography because of recurrent angina. NT-proBNP measured before coronary intervention. The patients were divided into two groups of instent restenosis developed and undeveloped.

Results: In the multivariate regression analysis; Age (OR = 1.067; 95% CI 1.002-1136, P = 0.042) and NT-proBNP (OR = 1.023, 95% CI 1.008-1.038, p = 0.002) have been shown that they were independent predictors of IRS. The optimal threshold NT-pro BNP value for predicting IRS was >111, with a 56.5% sensitivity and 92% specificity (area under the curve [AUC]: 0.749, 95% CI: 0.639-0.840, P <0.001).

Conclusion: Measurement of NT-proBNP in stable coronary artery disease patients used to predict IRS; may help physicians to estimate the presence of IRS.

Keywords: NT-Pro BNP; Coronary Artery Disease; Instent Restenosis.

INTRODUCTION

Coronary heart disease, results in reduced blood flow to the myocardium due to coronary atherosclerosis. This disease is among the causes of mortality and morbidity in our country as well as all over the world (1,2).

In-stent restenosis (ISR) is an undesirable condition seen after percutaneous coronary intervention and is an important cause of recurrence of coronary morbidity and revascularization after coronary surgery (3,4). Increasingly, in the treatment of more complex lesions and although it uses stents for its widespread use intra-stent restenosis is between 10-20% (5).

Brain natriuretic peptide (BNP) is synthesized by cardiac myocytes against increased ventricular wall stress. After secretion as prohormone it is separated into NT-proBNP, which contains the biologically active brain natriuretic peptide and the inactive N-terminal part. Even if NT-proBNP is not myonecrosis, ischemic events can be increased by the consequence of systolic and diastolic dysfunction. In a large number of clinical trials, it has been shown that NT-proBNP has an important prognostic value in acute coronary syndromes (6,7).

Although the association between NT-proBNP and coronary artery disease has been shown in previous studies the relationship between long-term follow-up stent restenosis after revascularization of patients with stable coronary artery disease was not studied (8). On follow-up of stable coronary artery patients who were revascularized in our study, we aimed to evaluate the relationship between stent restenosis and NT-proBNP.

MATERIAL and METHODS

Between 2015 and 2016, 411 patients with stent implantation due to stable coronary artery disease were evaluated retrospectively. 80 patients underwent repeated angiography as a result of recurrent angina symptoms. 80 patients who were found to have a high risk of stable coronary artery disease and who underwent re-coronary angiography for this reason were included in the study.

Written or verbal informed consent was received from all patients, and the study protocol was approved by the hospital's local ethics committee in accordance with the Helsinki Declaration and Good Clinical Practice Guidelines.
Patients with ST elevation myocardial infarction, non-ST-elevated myocardial infarction, unstable angina pectoris, Ejection fraction ≤ 50%, patients with moderate-to-severe valve disease, patients with non-drug-eluting stents, patients with chronic renal failure, patients with chronic liver failure, patients with CRP, high sedation and coronary angiography with stent restenosis plus newly developed critical stenosis were excluded.

Coronary angiography and angioplasty were performed by femoral approach using 6F (French) catheters. All angiographic measurements were made in diastole. Restenosis after coronary arteriovenous intervention was defined as > 50% stenosis, which is intimal proliferation in the control angiography (9).

Blood samples taken immediately and NT-pro BNP measured before coronary intervention. The quantitative measurement of NT-pro BNP was performed in full flush with a fluorescence immunoassay kit (FIA 8000, Quantitative Immunoassay Analyzer, California). Note that the whole blood sample is homogeneous; the sample taken with the special pipette was studied after it was added on disposable test cards. Again biochemical parameters were studied in the biochemistry laboratory prior to coronary intervention.

Statistical Analysis

The data analysis was conducted using SPSS (version 20.0, SPSS Inc., Chicago, IL, USA) and Med Calc statistical software (trial version 12.7.8, Mariakerke, Belgium). Continuous variables data are expressed as the mean ± standard deviation. Categorical variables were compared using Chi-square or Fisher’s exact tests and summarized as percentages. To predict IRS, age, diabetes mellitus (DM), hypertension (HT), hyperlipidemia (HL), smoking and NT-pro BNP were included in the multiple logistic analysis. Receiver operating characteristic (ROC) curves were used to predict the future incidence of IRS.

RESULTS

The demographic, laboratory, and angiographic characteristics of the 80 subjects included in the study are given in Table 1.

ISR was detected in 24 of 80 patients with coronary re-angiography. Age, DM history, pretreatment NT-pro BNP levels were statistically different between the groups. In addition, in the evaluation of the responsible artery, it was observed that the development of restenosis was higher in the LAD artery (p <0.001). In the multivariate regression analysis; Age (OR = 1.067; 95% CI 1.002-1.136, p = 0.042) and NT-pro BNP (OR = 1.023, 95% CI 1.008-1.038, p = 0.002) have been shown that they were independent predictors of IRS (Table 2). The optimal threshold NT-pro BNP value for predicting IRS was >111, with a 56.5% sensitivity and 92% specificity (area under the curve [AUC]: 0.749, 95% CI: 0.639-0.840, P <0.001) Figure 1.

Figure 1. ROC curve graphics to detect the best cut-off value for the NT-pro BNP in predicting the In-stent restenosis.
In conclusion, we concluded that NT-pro BNP measurement in stable coronary artery patients undergoing coronary angiography may be a useful parameter in predicting restenosis. However, we believe that further clinical trials will be useful for this.

Acknowledgements
Declaration of interests: The authors declare that they have no competing interests.

REFERENCES

Table 2. Univariate and Multivariate Analysis for IRS

<table>
<thead>
<tr>
<th></th>
<th>Univariate analysis</th>
<th>Multivariate analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OR 95% CI P value</td>
<td>OR 95% CI P value</td>
</tr>
<tr>
<td>Age</td>
<td>1.071 0.005</td>
<td>1.067 1.002–1136 0.042</td>
</tr>
<tr>
<td>Smoking</td>
<td>1.421 0.502</td>
<td></td>
</tr>
<tr>
<td>Diabetes Mellitus</td>
<td>0.357 0.043</td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>1.800 0.258</td>
<td></td>
</tr>
<tr>
<td>Hyperlipidemia</td>
<td>0.778 0.606</td>
<td></td>
</tr>
<tr>
<td>NT-Pro BNP</td>
<td>1.020 0.001 1.023 1.008-1.038 0.002</td>
<td></td>
</tr>
</tbody>
</table>

DISCUSSION
In this study it has been shown that NT-pro BNP and age are effective and independent parameters in predicting the presence of IRS in previously revascularized stable coronary patients.

Recently, the relationship between the level of natriuretic peptides and cardiovascular diseases has interested to clinicians. NT-proBNP, a marker of myocardial stress, has been shown to directly increase NT-proBNP, the data show that transient ischemia increases NT-proBNP synthesis from cardiomyocytes, either directly or by increasing wall stress (12).

Sir Jung-Ju et al showed that involving patients with stable angina and acute coronary syndrome with normal systolic function, the relationship between NT-pro BNP values before and after coronary angiography in patients with revascularization was investigated and NT-proBNP has been shown to be an independent predictor of low specificity for re-invasive revascularization (13). Seo Na Hong et al showed that NT-pro BNP could predict ISR in patients with preserved systolic functions. In this study, NT-pro BNP levels were significantly higher in ISR-detected patients before control coronary angiography. Seo Na Hong et al also included patients with acute coronary syndrome to their study (8). In our study, only patients with stable coronary artery disease that were previously revascularized were included and it was observed that NT-pro BNP values an independent predictor of IRS. Furthermore, in our study with only stable coronary artery disease patients, ROC curve analysis showed an IRS of 56.5% sensitivity and 92% specificity (AUC 0.749). Similar to the study done by Seo Na Hong et al., it was found that the development of IRS in the patients with stable coronary artery which had previously been interfered with LAD artery was higher than the other vessels. In previous studies, age has been shown to be a risk factor for the IRS (14). Similarly, in our work, old age has been shown to be an independent factor in the development of IRS.