Vitamin E plays a protective role while acrylamide administration disrupted the placenta structure in pregnancy: An experimental study

Zeynep Erdemli, Mehmet Erman Erdemli
Inonu University Faculty of Medicine, Department of Medical Biochemistry, Malatya Turkey

Abstract

Aim: The present study aimed to investigate possible variations in the placental tissues of rats upon acrylamide (AA) and vitamin E (Vit E) applications between the 0th and 20th days of pregnancy.

Materials and Methods: Pregnant rats were divided into control, corn oil, AA, Vit E, AA + Vit E groups. At the end of the experimental period, the abdominal tissue of pregnant rats that were anesthetized with xylazine-ketamine was incised, and the placental tissues that connect the mother and the fetus were removed. Biochemical analyses were conducted based on the malondialdehyde (MDA), reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), protein, total antioxidant status (TAS), total oxidant status (TOS), oxidative stress index (OSI) levels in placental tissues.

Results: It was observed that there were no differences between the control and corn oil groups. It was determined that AA administration increased MDA, TOS and OSI levels and decreased SOD, CAT, TAS, and GSH levels when compared to all other groups. Vit E administration increased GSH, TAS, SOD and CAT levels when compared to all other groups. In the AA + Vit E group, it was observed oxidative stress parameters approached control group levels.

Conclusion: Administration of 10 mg/kg/bw AA led to placental oxidative stress in pregnant rats. This action induced by AA was not only through the increase in MDA, TOS and OSI levels, but also through the reduction of GSH, SOD, CAT, and TAS levels, leading to the deterioration of the oxidant-antioxidant balance. Administration of 100 mg/kg/bw Vit E increased antioxidant capacity in placental tissue. To minimize AA-induced toxicity exposure, we recommend the consumption of sufficient Vit E throughout life not only during pregnancy.

Keywords: Placenta; acrylamide; vitamin E; pregnancy; oxidative stress; rat

INTRODUCTION

Acrylamide (AA) is a water-soluble synthetic chemical substance. AA could be found in almost all industries. It is widely used in biochemistry, biotechnology, molecular biology laboratories (i.e., in electrophoresis, chromatography). It is also used during production in several industries such as textile, cosmetics, and hygiene (1). Furthermore, AA forms in food that contains monosaccharide and asparagine amino acid. Although the said formation mechanism was not described, acrylamide is produced as a result of millard reaction spontaneously at 120oC and above temperatures. AA is produced in foods especially during frying, grilling, or baking. Due to this mechanism, AA is studied extensively (2,3). The studies reported that AA had neurotoxic, carcinogenic, genotoxic, developmental retardation effects and effects on the reproductive system of experimental animals (4-7). Indigested AA could reach all tissues since it is easily soluble in water. This leads to the disruption of the oxidant / antioxidant balance in the system. Oxidants such as AA trigger oxidative stress through the increase in lipid peroxidation and reduction in glutathione. Oxidative stress could also lead to major cellular and tissue damages (8-12).

Vitamin E belongs to the group of fat-soluble vitamins. It could be found in 4 different forms and the most active form is α (alpha) tocopherol for humans. Wheat extract, sunflower seed, and oil, corn and soybean oil, olive oil, green olives, nuts, peanuts, and almonds are rich in vitamin E. Vitamin E exhibits a very strong antioxidant effect. It converts free radicals such as H2O2, O2, OH- into less reactive compounds. Thus, it prevents oxidative
The present study aimed to investigate the effects of AA and Vitamin E administration on placental tissues in pregnant rats.

MATERIALS and METHODS

Ethical approval was obtained from the İnönü University, Faculty of Medicine Experimental Animals Ethics Committee (2016 / A-24). Young female Wistar albino rats that weighed 250 ± 20 g bred at İnönü University, Faculty of Medicine Experimental Animal Breeding and Research Center (INÜTF-DEHÜM) were used in the study. The rats were placed in special cages at 5 pm in the rate of a male rat to every 2 females. They were kept in the same cage until 8 am the next day. At the end of this period, the males were separated from the females. Vaginal smears were taken from female rats and examined under a microscope and females with sperm on the smear were accepted as half-day pregnant. Females whose pregnancies were not + in the smear test were excluded from the experiment. Pregnant rats were kept in INÜTF-DEHÜM rooms under 21 ± 2ºC for 20 days (gestation period), under 12 hours of daylight and 12 hours of darkness and the rooms were constantly ventilated by aspirators. The rats were fed ad libitum during the experiment. Forty rats determined as pregnant with the smear test were randomly selected and divided into 5 groups as follows:

The Study Design

Group 1: Control group (n = 8), no administration was conducted to pregnant rats mated simultaneously with the experimental group rats.

Group 2: Corn oil group (n = 8), corn oil was administered to pregnant rats via oral gavage.

Group 3: AA group (n = 8), 10 mg/kg/BW AA was solved in drinking water and administered to pregnant rats via oral gavage at (Sigma A8887) (16).

Group 4: Vit E group (n = 8), 100 mg/kg/BW Vit E was dissolved in corn oil and administered to pregnant rats via oral gavage (Sigma T3251) (17).

Group 5: AA + Vit E group (n = 8), 10 mg/kg/bw AA and 100 mg/kg/bw Vit E were administered to pregnant rats via oral gavage.

The applications were all 1 mL and administered at the same hour on all days during the 20-day experimental period. Placental tissues were removed by cesarean section under anesthesia on the 20th day of gestation.

Preparation of the Tissues for Biochemical Analyses

Placental tissues preserved in the freezer (-80°C) were removed on the day of the analysis and weighed. Phosphate buffer was added to create a 10% homogenate and homogenized on ice for 1-2 minutes at 12000 rpm (IKA, Germany). The homogenate products were used to determine the malondialdehyde (MDA) levels. Serum samples were obtained by centrifuging the tissue homogenates at 5000 rpm and +4 degrees for 30 minutes. The serum samples were used to determine the reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), total antioxidant status (TAS), total oxidant status (TOS) oxidative stress index (OSI) and protein levels and various biochemical parameters.

MDA Levels

MDA analysis was conducted with the method developed by Uchiyama and Mihara (18). The MDA concentration was determined by the measurement of the supernatant extracted from the n-butanol phase of the pink-colored product formed by the reaction between the MDA in the supernatant and thiobarbituric acid at 535 and 520 nm with a spectrophotometer. Results were expressed as nmol/g wet tissue.

GSH Levels

GSH analysis was conducted with the method described by Ellman (19). The GSH concentration in the analysis tube produces a yellow-green color reacting with 5,5-dithiobis 2-nitrobenzoic acid, and GSH concentration is determined by reading the light intensity of this color in a spectrophotometer at 410 nm wavelength. Results were given as nmol/g wet tissue.

SOD Activity

The method developed by Sun et al. (20) was used to determine SOD enzyme activity. In the method, superoxide radicals are produced by the xanthine-xanthine oxidase, leading to the formation of a blue color induced by NBT (nitro blue tetrazolium) reduction. The SOD activity is determined by the absorbance of the formazan at 560 nm. Results are presented as U/g protein.

CAT Activity

Aebi and Bergmeyer’s (21) method was used to determine the CAT enzyme activity. The maximum absorbance initiated by hydrogen peroxide (H2O2) in the ultraviolet spectrum is observed at 240 nm and the hydrogen peroxidase, added to the medium, breaks down into water and oxygen by catalase, leading to a reduction in absorbance at 240 nm. The enzyme activity is determined by the measurement of the reduction in absorbance for 1 minute. The findings are expressed as K/g protein.

Protein Levels

The method developed by Lowry et al. (22) was used to determine the pancreas tissue serum sample total protein content at 700 nm. Results are given as mg/mL.

TOS Levels

TOS was determined by the method developed by Erel (23). Based on this method, absorbance of 500 μL reagent 1 (measurement buffer) and 75 μL serum mixture was determined at 530 nm with ELISA set to 25oC. In the next stage, the product was incubated for 10 min after the addition of 25 μL reagent 2 (pro-chromogenic solution). Then, the absorbance was read again at 530 nm to
Table 1. Placenta tissue oxidant–antioxidant parameters in all groups.

<table>
<thead>
<tr>
<th>Groups</th>
<th>MDA (nmol/gwt)</th>
<th>GSH (nmol/gwt)</th>
<th>SOD (U/g protein)</th>
<th>CAT (K/g Protein)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>378.5±10.57a</td>
<td>732.06±23.78a</td>
<td>34.7±2.61a</td>
<td>4.04±0.08a</td>
</tr>
<tr>
<td>Co</td>
<td>364.72±7.59a</td>
<td>744.76±26.24a</td>
<td>37.48±1.77a</td>
<td>4.06±0.17a</td>
</tr>
<tr>
<td>AA</td>
<td>479.23±13.77b</td>
<td>524.58±13.61b</td>
<td>24.14±2.7b</td>
<td>2.71±0.14b</td>
</tr>
<tr>
<td>Vit E</td>
<td>322.33±5.79c</td>
<td>944.57±33.92c</td>
<td>60.63±1.71c</td>
<td>6.49±0.3c</td>
</tr>
<tr>
<td>AA+ Vit E</td>
<td>405.33±2.79d</td>
<td>839.01±26.48d</td>
<td>44.7±1.25c</td>
<td>5.4±0.18d</td>
</tr>
</tbody>
</table>

Data are expressed as mean and standard deviation. MDA; Malondialdehyde, GSH; reduced glutathione, SOD; superoxide dismutase, CAT; catalase, gwt; gram wet tissue. Groups: Control (C), Corn Oil (CO), Acrylamide (AA), E Vit (Vitamine E), AA+ Vit E (Acrylamide + Vitamine E). (n = 10). The groups with different superscripts represent the statistical significance (p < 0.001).

DISCUSSION

Since AA is water-soluble, it can penetrate rat and mouse placenta. It reaches fetal tissues and could lead to permanent damages based on daily consumption (8). Since AA was categorized as a 2A carcinogen substance for humans recently, the number of experimental studies on AA in both adults and fetuses has been increased. Certain studies reported that acrylamide administration leads to serious biochemical, histopathological, genetic and morphological abnormalities on various fetal tissues based on the dose and duration (9, 10, 25, 26).

In previous studies, 10 mg/kg AA was administered to the rats between the 7th and 28th days of pregnancy and its effects on brain tissues were investigated. After 28 days, an increase in MDA levels, which is an oxidative stress parameter, and a decrease in GSH levels was observed in the fetal rat brain tissues when compared to all other
findings were consistent with other reports. They reported that AA increased the oxidant capacity in placental tissues, while Vit E improved the antioxidant capacity and inhibited oxidative stress. The present study demonstrated that the toxic material filtration potential of the maternal liver and kidney tissues were insufficient based on more detailed biochemical parameters. Thus, we recommend that strong antioxidant substances such as Vit E should be consumed daily to protect the mother and the fetus from permanent damages induced by food-borne AA toxicity.

Acknowledgment: The authors thank Prof. Dr. Yusuf Türköz and Prof. Dr. Ahmet Ümit Erdemli for their kind helps.

Competing interests: The authors declare that they have no competing interest.

Financial Disclosure: There are no financial supports.

Ethical approval: The decision of the ethics committee of Inonu University Faculty of Medicine numbered 2016/A-24.

REFERENCES

4. Edwards PM. The insensitivity of the developing rat hippocampus tissue TAS levels increased when compared to the diabetes group and TOS levels decreased with Vit E administration (9). Erdemli et al. (26) administered 5 mg/kg/day AA to rats between the 3rd and 13th days of pregnancy. On the 13th day of pregnancy, the rat placental tissues were removed and examined. The authors reported that, depending on the dose, AA reduced mRNA levels such as Esx1, Hand1, and Hand2 that play key roles in the placental tissue and lead to histopathological problems (29).

In a study that investigated whether Vit E had a protective role, the authors administered 100 mg/kg Vit E to diabetic male rats for 6 weeks. The rat brain tissues were examined after 6 weeks. The authors reported that hippocampus tissue TAS levels increased when compared to the diabetes group and TOS levels decreased with Vit E administration (29). Erdemli et al. (30) administered 5 mg/kg/BW AA and 100 mg/kg/BW Vit E daily as a preservative throughout pregnancy. On the 20th day of pregnancy, rat placental tissues were removed with the cesarean section under anesthesia. Biochemical analysis of the placental tissue demonstrated that AA administration increased MDA, XO and TOS levels when compared to all other groups. It was found that Vit E administration increased TAS and GSH levels when compared to all other groups. They reported that AA increased the oxidant capacity in placental tissues, while Vit E improved the antioxidant capacity and inhibited oxidative stress. The present study findings were consistent with other reports.

CONCLUSION

In our previous pregnancy model, we reported that 5 mg/kg/bw AA dose administration led to oxidative stress in the placental tissue shifted the oxidant/antioxidant balance in favor of oxidants. In the present study, the investigation of the effects of 10 mg/kg/bw AA dose on placental tissues demonstrated that the toxic material filtration potential of the maternal liver and kidney tissues were insufficient based on more detailed biochemical parameters. Thus, we recommend that strong antioxidant substances such as Vit E should be consumed daily to protect the mother and the fetus from permanent damages induced by food-borne AA toxicity.

