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MAIN POINTS

• A deep learning–based model was devel-
oped to evaluate the Ki-67 proliferation in-
dex in breast carcinoma and compared
with manual assessment.

• The model showed high accuracy and low
error rates in low-proliferation cases (<20%
Ki-67) (MAE: 5.31%; accuracy: 80%).

• AI-assisted evaluation has the potential
to reduce interobserver variability, mini-
mize human error, and ease the workload
of pathologists during the preliminary as-
sessment phase.

• Error analysis in high-proliferation samples
revealed segmentation challenges due
to dense nuclear clustering and faint
immunonegative staining, indicating that
advanced image-processing techniques
could further improve model performance.

Cite this article as: Cetinkaya Karabekir S,
Gokhan A, Arslan H, Keskin B, Dagli AF. Evaluation
of conventional histopathological scoring in
breast carcinoma using artificial intelligence
technologies. Ann Med Res. 2026;33(1):33--42.
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ABSTRACT

Aim: Breast cancer is the most commonly diagnosed malignancy in women, and early
detection plays a critical role in the success of treatment. The Ki-67 proliferation index is
widely used to evaluate tumor cell proliferation; however, its manual scoring process is
observer-dependent, time-consuming, and inherently subjective. This study aims to as-
sess Ki-67 immunohistochemical staining using deep learning algorithms in an objective,
rapid, and reproducible manner, and to compare the model’s performance with conven-
tional scoring methods.
Materials and Methods: In the first phase of the study, a dataset was created using digi-
tal images of Ki-67-stained histological sections obtained from patients diagnosed with
breast cancer. These images were used to train a machine learning algorithm. In the sec-
ond phase, 50 new Ki-67-stained tissue sections previously unseen by the model were
digitized, and the model’s predictions were compared with Ki-67 index values calculated
by conventional manual assessment.
Results: The developed model achieved a mean absolute error (MAE) of 8.69%, a root
mean square error (RMSE) of 13.00%, and a coefficient of determination (R²) of 0.540 in
overall prediction performance. For cases with low proliferation (Ki-67<20%), the model
demonstrated high accuracy (MAE: 5.31%). Binary classification based on a 20% thresh-
old yielded 80% accuracy, 80% sensitivity, 90% precision, and an F1 score of 0.84.
Conclusion: The use of artificial intelligence algorithms in Ki-67 assessment demon-
strated successful performance, with an MAE of 8.69%, and has the potential to reduce
pathologists' workload during the preliminary evaluation phase. The findings suggest
that, with further refinement, the proposed model could contribute to more objective,
consistent, and reproducible assessments in breast cancer diagnostics.

Keywords: Breast cancer, Ki-67, Artificial intelligence, Deep learning, Artificial
neural network
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INTRODUCTION
Each year more than half a million women worldwide die
from breast cancer. To reduce mortality associated with
breast cancer, many countries have implemented screening
programs over the past two decades. These programs have led
to a nearly 30% reduction in breast cancer-related deaths by
enabling earlier diagnosis, combined with advances in treat-
ment. Nevertheless, breast cancer remains the leading cause

of cancer-related mortality among women [1]. Breast cancer
encompasses various subtypes [2]. According to the World
Health Organization (WHO) Classification of Tumours of
the Breast (5th edition, 2019), breast cancer is categorized
into well-defined histological subtypes. These include duc-
tal carcinoma in situ (DCIS), invasive carcinoma of no spe-
cial type (NST), invasive lobular carcinoma, tubular carci-
noma, mucinous carcinoma, medullary carcinoma, apocrine
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carcinoma, metaplastic carcinoma, and other rare variants.
In addition, molecular subtypes such as hormone receptor-
positive/HER2-negative, HER2-positive, and triple-negative
breast cancers are also recognized due to their prognostic and
therapeutic significance. This classification provides a more
standardized approach to diagnosis, research, and treatment
planning [3].

Early and definitive diagnosis of breast cancer, including the
identification of its specific subtype, is crucial in preventing
disease progression and associated complications. Accurate
diagnosis enables timely and effective treatment planning and
ultimately reduces breast cancer-related mortality. Various
imaging modalities are used for breast cancer detection, in-
cluding mammography (MG) [4], breast thermography (BT)
[5], magnetic resonance imaging (MRI) [6], positron emis-
sion tomography (PET), computed tomography (CT) [7], ul-
trasound (US) [8] and histopathology (HP) [9]. These meth-
ods are widely used for detecting breast cancer at early stages
[10-12].

Among these, histopathological evaluation plays a critical role
in diagnosing, staging, and determination of breast cancer by
analyzing tissue specimens. Accurate staging of the cancer is
essential for selecting the most appropriate treatment strat-
egy. During this process, certain prognostic markers such as
the proliferation index (PI) and mitotic activity are used to
evaluate tumor biology. These markers help predict disease
progression and guide treatment decisions. Ki-67 is a nu-
clear antigen expressed in proliferating but not quiescent cells,
making it a reliable marker for calculating the PI. The Ki-67
proliferation index is determinedby evaluating immunohisto-
chemically stained tumor sections under a microscope. The
most densely stained region, referred to as the "hot spot," is
selected, and the proportion of Ki-67-positive nuclei relative
to the total number of nuclei is calculated and reported as the
proliferation index [13, 14].

However, histopathological assessment of breast tissue is
highly subjective anddepends on the experience of the pathol-
ogist [15-17]. Manual Ki-67 scoring is associated with signif-
icant interobserver variability, particularly around key clini-
cal thresholds (e.g., 14% or 20%), and lacks standardized cri-
teria for the number of high-power fields to be evaluated
[18]. These limitations introduce uncertainty into molecular
subtype classification and therapeutic decision-making [17].
Therefore, there is growing interest in the application of arti-
ficial intelligence (AI)-based approaches to reduce subjectiv-
ity in pathological assessment, particularly in breast pathol-
ogy [15-17].

Numerous AI-based tools utilizing machine learning (ML)
and deep learning (DL) have been developed for tasks such as
breast cancer classification, detection, and segmentation [19].

Recent comprehensive reviews and applied studies highlight
that artificial intelligence can be integrated into all stages of
breast pathology, including classification, grading, biomarker

quantification, and risk prediction; in particular, CNN and
VisionTransformer (ViT) based approaches have been shown
to provide robust feature learning at the whole-slide image
(WSI) level [20-22]. In parallel, methods have been reported
for automatic scoring and risk stratification in fine distinc-
tions such as HER2-low status and in key biomarkers such
as Ki-67 [23]. Nevertheless, significant barriers to routine
clinical adoption remain, including validation, generalizabil-
ity, and standardization. Studies published in 2024–2025
emphasize that digital image analysis tools especially for Ki-
67 evaluation have not yet provided sufficient evidence to be
deemed fully suitable for clinical practice, underscoring the
need for large-scale, multicenter validation [24, 25].
Artificial intelligence was first conceptualized byAlanTuring
in 1950 and later defined by John McCarthy in 1956 as “the
science and engineering of making intelligent machines [26,
27]. Today, AI represents a broad domain within computer
science aimed at developing machines capable of performing
tasks that typically require human intelligence [28]. These
systems can store experiences, learn from them, reason, cre-
ate, judge, and make decisions. A critical subset of AI, ma-
chine learning (ML)—particularly in conjunction with deep
learning (DL)—has enabled significant progress in image pro-
cessing [29].
DL employs multilayered architectures such as convolutional
neural networks (CNNs), whichmimic human visual percep-
tion and excel at tasks such as classification and segmentation
[30]. Due to their ability to extract meaningful features from
raw data, DL-basedmodels have proven highly effective in an-
alyzing pathology images. In this context, AI applications in
pathology are primarily based on the recognition of visual pat-
terns via CNNs and the extraction of diagnostic information
from digitized slides [29].
The classification, detection, and staging of breast cancer are
traditionally conducted by pathologists based on theoretical
knowledge and clinical experience. However, this process is
labor-intensive and time-consuming. Although accumulated
observational expertise is invaluable, the potential for human
error and time constraints associated with manual protocols
cannot be overlooked. In this context, the present study
aims to investigate the feasibility of evaluating Ki-67 a key
biomarker in breast carcinoma diagnosis using artificial intel-
ligence algorithms after initial manual assessment by pathol-
ogists. This approach aims to minimize human error and en-
hance the reliability of pathological evaluations.

MATERIALS ANDMETHODS

This study was approved by the Non-Interventional Clini-
cal Research Ethics Committee of İzmir Bakırçay University
(Decision No: 1357, Date: 13.12.2023). The research was
conducted in accordance with the ethical principles outlined
in the Declaration of Helsinki, with full respect for human
rights.
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Between January 2021 and March 2025, a total of 150 pa-
tients with histopathologically confirmed breast carcinoma
whose Ki-67 index had been assessed at the Department of
Pathology, İzmir Bakırçay University Çiğli Training and Re-
search Hospital, were included. All slides were digitized at
40× magnification, and only cases meeting predefined tech-
nical quality criteria (adequate focus, contrast, and back-
ground) were analyzed. Inclusion in the training set addition-
ally required the availability of archival FFPE (formalin-fixed,
paraffin-embedded) tissue blocks. Cases with pronounced
staining artifacts, excessive background, or other technical de-
fects rendering images unsuitable for analysis were excluded.
An apriori power analysis (G*Power 3.1) for a two-tailedPear-
son correlation with α = 0.05, power = 0.90, and an antici-
pated effect size r≈ 0.26 indicated a required total sample size
of 150.

Dataset construction
The study focusedon theKi-67proliferation index of patients
with breast cancer evaluated during routine diagnostic proce-
dures at the Department of Pathology. A total of 100 digi-
tal images of breast cancer tissue sections immunohistochem-
ically stained for Ki-67 were used. Imaging was performed
using a ZEISS Axiolab 5 digital laboratory microscope inte-
grated with a Zeiss AxioCam ERc 5s camera, and image data
were recorded using ZEN 3.4 (Blue Edition) software. These
images formed the digital dataset used to train the machine
learning (ML) model.

Histopathological evaluation
Immunohistochemically stained breast cancer tissue sections
were evaluatedmanually by experienced pathologists. During
the scoring process, a total of 1,000 tumor cells were counted
across the tissue section by identifying nuclei showing Ki-67
positivity, and the Ki-67 proliferation index was calculated.
This method, which is widely accepted in literature, is con-
sidered reliable for assessing tumor cell proliferative activity
and predicting breast cancer prognosis. Counting was per-
formed in the area of highest labeling intensity, known as the
’hot spot,’ at 40× magnification.

Use of deep learning algorithms
Adeep learning-basedmodelwasdeveloped to facilitate faster,
more objective, and reproducible evaluation of cell prolif-
eration indices derived from Ki-67 immunohistochemistry
(IHC) images, which arewidely used in breast cancer diagnos-
tics. For the task of cell segmentation, Cellpose—a general-
purpose cell segmentation algorithm built on a convolutional
neural network (CNN) architecturewas employed [31]. Cell-
pose is capable of accurately distinguishing cellular structures
such as nuclei and cytoplasm in biological images.
The images were examined by an expert pathologist, and
‘hot-spot’ areas with the highest labeling intensity were in-
cluded in the analysis; stromal and inflammatory cells were

excluded. Using the Cellpose interface, two separate mod-
els were trained: one configured to segment all cells and the
other to detect only Ki-67–stained cells. During model train-
ing, all nuclei were manually annotated, and positive/nega-
tive classification was performed based on staining intensity
and nuclear morphology. No pre-processing (e.g., color nor-
malization, contrast enhancement) was applied. The hyper-
parameters used during training included a learning rate of
0.1, a weight decay of 0.0001, and 100 epochs. After training,
both models were run for each image in the test dataset and
the results were recorded. Validation of the test data was per-
formed by the expert pathologist, after which the differences
between the ground truth and themodel predictionswere cal-
culated as percentages. Finally, statistical analyses were ap-
plied to demonstrate the reliability of these differences.

Model training and optimization

The model was trained using high-resolution digital images
of Ki-67-stained tissue sections obtained from retrospectively
confirmed cases of breast carcinoma. No preprocessing
techniques (e.g., contrast enhancement, color normalization,
noise reduction) were applied to maintain the visual fidelity
of images as perceived by pathologists and to ensure fair com-
parison between manual and automated assessments.
Cellpose, an open-source segmentation algorithm, was de-
ployed in a local Python environment on a personal com-
puter. Leveraging its flexibility, two separate models were
trained using both pre-trained weights and task-specific
datasets:
1. A general model for detecting and counting all cells.
2. A specialized model for identifying and counting only Ki-
67-positive cells (Figure 1).
The Ki-67 proliferation index for each image was calculated
as the ratio between the outputs of these two models.
Training was conducted using a supervised learning approach
on 100Ki-67-stained histological images acquired at 40xmag-
nification. All cells and Ki-67-positive nuclei in these im-
ages were manually annotated, and the resulting segmenta-
tion masks were formatted in .npy files for model input (Fig-
ure 2).
During training, model weights and hyperparameters were
optimized to enhance segmentation performance. Training
was executed on a personal computer equipped with an Intel
i7-13650HX processor, 32 GB RAM, 512 GB SSD, and an
NVIDIA RTX 4060 GPU (Figure 2).

Model validation with test dataset

Model validation was performed using an independent test
dataset curated and verified by expert pathologists. This
dataset comprised previously unseen samples not used dur-
ing training. Accordingly, paraffin blocks from 50 histolog-
ically confirmed breast cancer cases were retrieved from the
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Figure 1. Screenshots of model outputs: (a) model detecting and counting all cells in the image, (b) specialized model detecting and counting only
Ki-67--positive cells.

Figure 2. Diagram illustrating the workflow of the AI model from patch extraction to cell classification. (A) Original image; (B--E) segmentation steps
including patch extraction and masking; (F) final output image showing the detection and separation of Ki-67--positive (brown-stained) and negative
cells.

pathology archives of İzmir Bakırçay University Çiğli Train-
ing and Research Hospital, and tissue sections were prepared
via microtomy. These sections were then subjected to Ki-67
immunohistochemical staining in the Histology and Pathol-
ogy Laboratory of the university.

Immunohistochemical staining protocol
Paraffin-embedded tissue blocks from breast cancer patients
were sectioned at 5 µm thickness using a microtome. Ki-
67 immunostaining was performed using a primary antibody
(Abcam, ab16667). Deparaffinization was achieved with xy-
lene for 30 minutes, followed by hydration through graded
alcohols. To block non-specific binding, sections were in-
cubated in citrate buffer (pH 6.0) and 3% hydrogen perox-
ide, then treated with Ultra V Block. Subsequently, sections

were incubated overnight with the Ki-67 primary antibody,
followed by a 10-minute incubation with the secondary an-
tibody. Signal development was achieved using streptavidin-
peroxidase anddiaminobenzidine (DAB).After chromogenic
reaction, Mayer’s hematoxylin was used as a counterstain.
Coverslips were mounted with Entellan, and sections were
visualized using a Zeiss Lab.A1 light microscope and pho-
tographed with the Zeiss AxioCam ERc 5s imaging system.

Preparation of validation dataset for performance evalua-
tion
Following IHC staining, the most intensely labeled nuclear
regions ("hot spots") were selected from each sample, and 40x
magnification digital images were acquired. These 50 images
were reserved exclusively for the validation phase of the study.
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Following segmentation and classification, the Ki-67 index
values predicted by the model were compared against manu-
ally calculated values obtained by an experienced pathologist
from the same images. This comparison served to assess the
predictive accuracy of the model.
The validation phase was designed to evaluate the clinical reli-
ability, validity, and applicability of the proposedmodel. The
results demonstrated the model’s predictive performance and
highlighted the potential of AI-based systems in histopatho-
logical assessment.

Statistical analysis

The deep learning model’s performance was evaluated using
both regression and classification metrics. Prediction accu-
racywasquantifiedusingMeanAbsoluteError (MAE),Mean
SquaredError (MSE),RootMeanSquareError (RMSE),Co-
efficient of Determination (R²), and PearsonCorrelationCo-
efficient (r), alongside a scatter plot to visualize the relation-
ship between predicted and actual values. For binary classifi-
cation, a clinical Ki-67 threshold of 20% was applied. A con-
fusion matrix was generated to calculate Accuracy, Sensitiv-
ity (Recall), Precision, Specificity, and F1 Score, assessing the
model’s capacity to differentiate between low and high prolif-
erative index groups.

RESULTS
Model performance and overall statistical evaluation

The performance of the Ki-67 proliferation index prediction
model was evaluated using five fundamental regression met-
rics. All statistical calculations were performed using Mi-
crosoft Excel, and the selected metrics were used to assess the
model’s predictive capacity frommultiple dimensions.
A quantitative summary of model performance is presented
in Table 1.
The mean absolute error (MAE) was calculated as 8.69%, in-
dicating an average deviation of ±8.69 percentage points in
the model’s predictions. The mean squared error (MSE) was
found tobe 169.07,while the rootmean square error (RMSE)
was 13.00%, suggesting that predicted values deviated from
actual values by an average of 13 points, representing the stan-
dard deviation of the error distribution.
The coefficient of determination (R²), calculated to evaluate
the explanatory power of the model, was 0.540. This value
indicates that the model explains 54% of the total variance in
the Ki-67 proliferation index. Furthermore, the Pearson cor-
relation coefficient (r) between the predicted and actual val-
ueswas calculated as 0.753, indicating a statistically significant
and strong positive correlation between the two variables.
Overall, the developed model demonstrated consistent pre-
dictive performance, particularly in low-to-moderate Ki-67
value ranges, and was capable of establishing a strong linear
relationship with approximately 75% correlation strength.

Figure 3. Visual analysis of model performance: relationship between
actual Ki-67 index values and those predicted by the model.

Analysis of predicted and actual values

A visual analysis of the model’s performance revealed the re-
lationship between predicted and actual Ki-67 values. The re-
sults indicated that the model produced generally consistent
predictions (Figure 3).
To further investigatemodel performance, the fivemost accu-
rate and five most erroneous predictions were analyzed. The
analysis of the top five predictions showed high accuracy, par-
ticularly in cases with low Ki-67 levels. Conversely, the most
erroneous predictions revealed systematic issues in estimating
high Ki-67 values (Figure 4).
Error analysis demonstrated that the model performed more
accurately in the 10–30% prediction range, while substantial
underestimation was observed for values≥50% (Table 2).

Class-based error analysis

Given the clinical significance of Ki-67 values, a class-based
performance analysis was performed. For this purpose, true
Ki-67 values were dichotomized using a 20% threshold, sep-
arating the cases into two groups: low proliferation (<20%)
and high proliferation (≥20%). This threshold aligns with
the commonly used luminal subtype classification in the lit-
erature and is critical for tumor aggressiveness and prognosis
evaluation. For each class, MAE and RMSE were calculated.
The error levels for lowKi-67 values (<20%)were significantly
lower, suggesting that the model had better predictive accu-
racy for this group. In contrast, prediction errors increased in
the high Ki-67 group (≥20%), with the MAE reaching 12.32
(Table 3).

Trend and subgroup-based evaluation of model predictions

TheKi-67predictionmodelwas evaluatedusing 50pairedob-
servations, yielding mean values of 19.86 for real and 17.92
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Table 1. General evaluation of model performance metrics.

Metric Value Description

Mean Absolute Error (MAE) 8.69% Average prediction error
Mean Squared Error (MSE) 169.07 Weighting of large errors
Root Mean Squared Error (RMSE) 13.00% Measure of standard deviation
R² Score 0.540 Proportion of explained variance
Correlation Coefficient (r) 0.753 Strength of linear relationship

Table 2. The actual values, model predictions, and absolute error percentages of the five best and five worst predictions of the artificial intelligence
model regarding the Ki-67 index.

Best 5 Predictions Actual Value (%) Predicted Value (%) Absolute Error (%)

a 10 10.14 +0.14
b 5 4.83 -0.17
c 6 6.35 +0.35
d 25 24.64 -0.36
e 10 10.76 +0.76

Worst 5 Predictions Actual Value (%) Predicted Value (%) Absolute Error (%)

f 70 30.42 -39.58
g 13 51.04 +38.04
h 85 52.50 -32.50
i 60 27.58 -32.42
j 40 19.71 -20.29

Table 3. Class-based performance analysis of the model according to Ki-67 proliferation levels. The model demonstrated low error rates and high
accuracy in the <20% class, whereas its performance declined in the≥20% class.

Class Sample Size MAE RMSE Performance Evaluation

<20% 31 5.31 8.79 High performance
≥20% 19 12.32 14.19 Moderate performance

Table 4. Performance metrics used in the binary classification analysis of the Ki-67 proliferation index.

Metric Value Definition Description

Accuracy 0.80 Proportion of correctly classified samples Overall success rate
Error Rate 0.20 Proportion of misclassified samples Overall error rate
Sensitivity (Recall) 0.80 Proportion of correctly detected <20 cases Detection of low Ki-67
Precision 0.90 Proportion of correct <20 predictions Reliability of positive predictions
Specificity 0.80 Proportion of correctly detected≥20 cases Detection of high Ki-67
F1 Score 0.84 Harmonic mean of sensitivity and precision Balanced performance measure

for predicted data. The results demonstrated a strong corre-
lation (r = 0.753) and no significant overall bias according to
the paired t-test (mean difference = 1.94, p = 0.296), suggest-
ing that the model’s predictions were statistically consistent
with the actual values.

Subgroup analysis revealed that the model’s predictive accu-
racy varied across Ki-67 value ranges. In the low-proliferation
group (<20%, n = 31), prediction errors were small (MAE
≈ 5.3, RMSE ≈ 8.8) and statistically aligned with real val-
ues (p ≈ 0.003), indicating that the model performed re-
liably in this clinically relevant range. For the moderate-
high group (≥20%, n = 19), errors increased (MAE ≈ 12.3,
RMSE≈ 14.2) but still followed the correct statistical trend,
showing no major deviation in direction. However, in high-

proliferation subgroups (≥50%, n = 5 and ≥70%, n = 3),
significant underestimation was observed, with higher error
magnitudes (MAE ≈ 28.2–30.7; RMSE ≈ 29.5–31.7) and
corresponding p-values of≈0.003 and 0.03.

These findings indicate that while the model captured the
correct overall trend between predicted and real Ki-67 val-
ues, its accuracy decreased in extreme ranges, primarily due
to the limited number of high-proliferation samples. The re-
duced sample size in these subgroups likely contributed to
increased error variance and lower statistical stability. Over-
all, the model performed well for low-to-moderate Ki-67 in-
dices, demonstrating reliable predictive capacity, but tended
to underestimate values in clinically critical high-proliferation
cases.
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Figure 4. Example images of the five best (a, b, c, d, e) and five worst (f, g, h, i, j) predictions of the AI model for the Ki-67 index. (The actual values,
model predictions, and absolute error percentages for these examples are presented in Table 2).

Figure 5. Confusion matrix of the binary classification analysis using the 20% threshold for Ki-67.

Confusion matrix and classification performance

To evaluate the model’s performance in binary classifica-
tion, confusion matrix–based performance metrics were cal-
culated. Classification was performed using the 20% Ki-67
threshold to divide cases into two categories (Figure 5).

The model achieved an accuracy of 0.80, indicating that 80%
of predictions were correct overall. Sensitivity was also 0.80,
meaning that the model correctly identified 80% of low Ki-
67 cases. Consequently, 20% of high Ki-67 cases were missed.
The precisionwas calculated as 0.90, showing that among the
cases predicted tohave<20%Ki-67, 90%were indeed true pos-
itives. This high precision underscores the model’s reliability
in estimating low proliferation indices (Table 4).

DISCUSSION

The deep learning-based model developed in this study
yielded promising results for the objective, reproducible, and
rapid assessment of the Ki-67 proliferation index in breast
cancer samples. Themodel demonstrated acceptable diagnos-
tic sensitivity, particularly in low-proliferation cases (<20%),
with a mean absolute error (MAE) of 5.31% and a high F1
score of 0.84.

Conventional pathological assessment of the Ki-67 index via
manual counting is subject to interobserver variability and
human error, as previously reported in the literature [32].
Furthermore, this variability particularly at clinically relevant
thresholds such as 10–30% can significantly influence treat-
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ment decisions [33]. In this context, the potential of digital
image analysis and AI-assisted systems to improve objectiv-
ity and promote standardization in pathological evaluation is
noteworthy [34].
Recent studies have demonstrated the efficacy of digital
pathology and deep learning approaches for similar tasks. For
instance, Cireșan et al. (2013) achieved high accuracy in mi-
totic figure detection using a CNN-based model [35]. Sim-
ilarly, Veta et al. (2019), through the TUPAC16 challenge,
showcased the effectiveness ofmachine learning algorithms in
predicting breast tumor proliferation [34].
The sensitivity of themodel in binarymolecular subtype clas-
sification using the 20% Ki-67 threshold was found to be
80%, suggesting that some highly proliferative tumors may be
missed. Given the clinical importance of accurately identi-
fying high-risk cases, the incorporation of secondary control
mechanisms such as pathologist review is recommended be-
fore integration into clinical workflows.
The observed high accuracy of the model in cases with low
proliferation aligns with previous findings. Matsumoto et
al. (2025) reported that their deep learning model demon-
strated strong agreement (q = 0.961) with manual scoring in
494 breast cancer cases and showed low error rates in low Ki-
67 samples. This supports our results, particularly the low
MAEof 5.31% for <20%Ki-67 values [36]. Likewise, Dy et al.
(2024) showed that AI-assisted scoring significantly reduced
error rates (from5.9% to 2.1%), improved interobserver agree-
ment (ICC: 0.70 → 0.92), and decreased evaluation time in
a study involving 90 international pathologists. Notably, AI
applications were especially effective in standardizing assess-
ments within the 5–30% Ki-67 range, thereby reducing vari-
ability [37].
These findings support the low error rates observed in our
study for low Ki-67 values.
Additionally, error analysis of cases with Ki-67 positivity
≥20% revealed that the model’s limitations were not solely
due to class imbalance in the training dataset, but also to
morphological and staining-related segmentation challenges.
Analysis of the five most erroneous predictions revealed two
major issues. First, in regions with 85–90% immunopositive
nuclei, intense DAB staining and nuclear clustering impaired
the model’s ability to differentiate individual nuclei, leading
to systematic underestimation of cell counts. This finding is
consistent with prior reports indicating diminished segmen-
tation performance in densely packed cell regions [38, 39]
Second, some immunonegative nucleiwere too faintly stained
(pale blue) to be recognized by the segmentation algorithm.
This issue is commonly observed in threshold-based or tra-
ditional intensity-mapping segmentation approaches [31].
Moreover, our model intentionally excluded any preprocess-
ing such as color filtering to preserve the visual appearance of
slides as perceived by pathologists. While this approach en-
sured objectivity in comparative evaluation, studies suggest

that integrating color space optimization may enhance clas-
sification accuracy [40].

Limitations
Although the model developed in this study demonstrated
high accuracy in low-proliferation cases, a decline in perfor-
mancewas observed inhighKi-67 values (≥20%). This limita-
tion is not solely attributable to class imbalance in the training
dataset but is also associatedwith the absence of preprocessing
steps (e.g., color normalization, contrast adjustment) and the
challenges posed by intenseDAB staining andnuclear cluster-
ing, which complicated segmentation. In addition, the very
faint staining of some immunonegative nuclei restricted the
model’s discriminative capacity. These methodological and
technical constraintsmay limit the generalizability of the find-
ings and their applicability to clinical practice.

CONCLUSION
This study demonstrated that a deep learning-based model
can provide rapid, objective, and reproducible assessments
of the Ki-67 proliferation index in breast carcinoma samples.
Themodel’s high accuracy in low-proliferation cases supports
its potential role as a clinical decision-support tool. How-
ever, segmentation errors observed in highly proliferative sam-
ples underscore the need for advanced image processing tech-
niques to improve the model’s sensitivity to morphological
variability.
Future work will aim to integrate multi-channel color nor-
malization, histogram equalization, and adaptive threshold-
ing techniques into the segmentation pipeline. Addition-
ally, data augmentation strategies will be employed to ensure
a more balanced representation of complex and challenging
images in the training dataset. These enhancements are ex-
pected to improve overall model performance and facilitate
the broader and more reliable application of AI-assisted sys-
tems in histopathological diagnostics.
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